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Motivation

* The High-efficiency Electrified Aircraft Thermal Research (HEATheR) project

* Conceptual study looking into improving the efficiency of hybrid/electrified:
aircraft

* Project seeks to minimize waste heat generated by electrical components

* Also looks into novel solutions to avoid use of heavy thermal management . -
systems that cause drag

* In this work, an Outer Mold Line (OML) heat exchanger solution is considered & |
 Component waste heat is rejected via convection through the outer skin of the
aircraft
* No air ducting, or any geometrical change in flow path: virtually no effect on
vehicle drag
e Challenge: Electrical component temperature limits, as well as outer skin
structural considerations constrain the rejection temperature (<200C)
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e HEATheR Scope

* STARC-ABL: Single-aisle Turboelectric AiRCraft with Aft Boundary
Layer ingesting propulsion
* 150-passenger plane with an 3500hp, electric aft fan
* The aft fan is driven by an electric motor
* Generators on low pressure shaft of underwing turbofans
power the fan

* RVLT: Revolutionary Vertical Lift Technologies
* 15-passenger tilt-wing concept
* One turboshaft engine drivers a generator to power 4 fans

« PEGASUS: Parallel Electric-Gas Architecture with Synergistic

Utilization Scheme
» 48-passenger concept with a short fully-electric mission
* Turboelectic architecture for longer range missions
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Help assess the feasibility and practicality of OML-based heat rejection

How much heat can we reject?

Where to place the
OML heat exchangers?

How sensitive is the
cooling performance?

What is the effect on
vehicle aerodynamics?
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Method

Launch Ascent and Vehicle Aerodynamics (LAVA) Unstructured code is used
* Developed in-house at NASA-Ames
* Operates on arbitrary polyhedral unstructured meshes
* RANS solver with Spalart-Allmaras (SA) turbulence model
Boundary layer is resolved down to viscous sublayer (y+<1)
Propulsors are modeled using an actuator zone model '®
» Total thrust and torque of propulsors are imposed as momentum and energy
sources in a volumetric zone spanned by propeller blades or fan o
OML-cooling surfaces are modeled as isothermal
e With 200F surface temperature
* Temperature choice respects structural limits for long term operation
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STARC-ABL Nasa

* Half airplane is modeled, taking advantage of the symmetry

* Initial grid contains 25.6 million polyhedral cells

* For preliminary analysis, the entire aircraft is considered as a heat rejection surface
* The surface is split into logical patches to measure average heat rejection capability
* The preliminary simulations did not include the thrusters
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* Angle of attack sweep was simulated for both cruise and take-off
* Sensitivity of cooling at each surface patch was observed
* Most patches of interest exhibited robust performance with angle of attack variation
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STARC-ABL Down Selection of Surfaces “&“f‘

* Candidate OML cooling surfaces are
narrowed down according to:
* Consistent cooling performance
* Proximity to electrical components
e Away from critical stress areas
* Ease of implementation

e Grid was updated with additional refinement
at patch boundaries
e 28.5 million polyhedral cells

 The final set of simulations were run with
thrust-on
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Average Heat Transfer (W/mA2)

STARC-ABL Patch-to-Patch Interactions
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Engine Surfaces Excluded
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STARC-ABL Final Results

Take-off @ 8 deg angle of attack Cruise
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RVLT Grid

» ~24M polyhedral elements
» Half airplane is modeled
» Wall spacing selected to achieve y+ < 1
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RVLT OML Patching

» Candidate OML cooling regions have
been split into logical patches

» For RVLI, hover restricts the OML cooling
application to wing surfaces, cooling due
to prop downwash

» Wing leading edge, mid and trailing
edges have separate patches for inboard,
mid-board, and outboard

* Motor nacelles have been included as
candidates
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Prop downwash overlap
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RVLT Results — Cruise
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Pegasus Grid

« ~22.4M polyhedral elements
» Half airplane is modeled

« Wall normal spacing set to ensure
y+<1
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Pegasus OML Patching

» Candidate OML cooling regions have been split into logical patches
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&> PEGASUS Results — Take-off (alpha = 11 deg) .
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PEGASUS Results — Hot Day Take-off
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PEGASUS Results — Cruise
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PEGASUS Results — Cruise
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Conclusions

* Three different electrified aircraft concepts within HEATheR were considered for
OML-based heat exchanger implementation
* OML cooling approach was predicted to produce robust, consistent performance for
all 3 vehicles at various flight conditions
* The decreased air density at higher altitudes is compensated by lower ambient
temperatures i b
* Cooling capacity at take-off (or hover) is still more restricted compared tocruise
* Especially for a potential hot day  Agd
* The largest variation was observed for PEGASUS, for which the cooling capacity
is nearly halved compared to cruise
» The CFD results were used by project to size an OML-based thermal management
system
* Future works includes further verification and validation studies of the CFD analysis
* As the concept designs mature, a higher fidelity conjugate simulation can be
performed to predict surface temperature distribution along with heat flux
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